
Calling 16-Bit Code
From 32-Bit In Windows 95
by Brian Long

When moving from Delphi 1, or
indeed any 16-bit develop-

ment tool, to Delphi 2, it is usually
quite a large task to move a whole
application in one fell swoop. It is
sometimes desirable to be able to
move the main executable to 32-bit,
but move all the supporting files
over one or two at a time. Alterna-
tively, you may be writing a 32-bit
application and want to gain access
to some functionality in a 16-bit
DLL that you do not have a 32-bit
version of. In other words, you
might want to have 32-bit code call
16-bit code. Unfortunately Win32
does not support this very
elegantly.

The term used in conjunction
with calling 16-bit code from 32-bit
and vice versa is flat thunking. A
thunk is a small nugget of code
which acts as a mediator between
two other pieces of essentially un-
related code. 16-bit compiled code
is not capable of calling 32-bit code
directly and the converse is also
true. A thunk of some sort is used
to set things up so that one side can
call the other in a defined fashion.

There are a variety of thunking
mechanisms that allow Windows
code on one side of the 16-bit/32-bit
fence to call code on the other side,
but the required approach and
terms differ for the different 32-bit
platforms. See Table 1 for a matrix
of the possibilities.

We’ll forget about Win32s, the
Win32 subset layer that can sit
atop Windows 3.1x, since Delphi 2
is designed principally for Win-
dows NT and 95. The generic thunk
approach supported by Windows
NT and 95 uses the same set of APIs
but is restricted to 16-bit code call-
ing 32-bit code. You should be
aware that because of architec-
tural differences between the two
platforms, Microsoft advise that a
generic thunk may not be entirely
portable between Windows NT and

Windows 95. In Windows 95,
generic thunks are wrappers
around flat thunks, which we will
focus on here. For more details on
employing generic thunks, see
Dave Jewell’s article last month.

Flat Thunks
With The Thunk Compiler
The Win32 SDK tells us that flat
thunks are supported in Windows
95 by use of the Microsoft Thunk
Compiler, THUNK.EXE. This is a
complicated beast targeted at
C/C++ programmers that takes
some time to master, and usually a
lot of trial and even more error
each time you attempt to use it.
Moreover, to successfully use it
requires having the code for both
the 16-bit DLL and the 32-bit EXE
and re-linking both sides. This is
not always feasible.

In short, flat thunking with the
thunk compiler requires that you
create a C-like script which the
thunk compiler turns into assem-
bler code, which needs to be
assembled once to 16-bit and then
again to 32-bit. The two resultant
object files get linked to the 16- and
32-bit modules respectively. The
16-bit DLL source needs to be
modified to include a DllEntryPoint
routine. It also needs to import a
couple of Windows 95 routines and
be marked as a Windows 4.0
executable (a bit tricky in Delphi).

Many people say that if you can
get a 32-bit Delphi program calling
a 16-bit DLL using the thunk com-
piler then it will probably not end
up being worth the colossal effort
and heartache required. Others
say flat thunking in Delphi 2 is a
no-no: you must use a C or C++
product.

Because of the thunk compiler’s
inherent C bias, and the require-
ment to have both sets of source
code, we will take another
approach and find that Windows
95 flat thunking can be done with
Delphi 2. Matt Pietrek, in Windows
95 System Programming Secrets,
covers the basics of using an un-
documented Windows 95 routine
(which gets used in the code gener-
ated by the Microsoft Thunk Com-
piler) called QT_Thunk. This routine
is also discussed by Andrew Schul-
man in Unauthorized Windows 95
and can be used (with a bit of mess-
ing around) to call 16-bit code quite
happily from a 32-bit application. In
short, contrary to popular belief,
flat thunks are more than possible
with Delphi 2.

Cutie Flat Thunks
With QT_Thunk
This cunning routine (the QT prob-
ably stands for Quick Thunk),
which needs to be called from
assembler, jumps off into 16-bit ter-
ritory and executes a subroutine

Win32 platform Thunking mechanism Direction

Win32s Universal thunk 32-bit EXE ➞ 16-bit DLL

16-bit EXE➞ 32-bit DLL
(unofficially)

Windows NT Generic thunk 16-bit EXE ➞ 32-bit DLL

Windows 95 Generic thunk 16-bit EXE ➞ 32-bit DLL

Flat thunk 16-bit EXE ➞ 32-bit DLL

32-bit EXE ➞ 16-bit DLL

➤ Table 1: Thunking combinations

August 1996 The Delphi Magazine 33

whose address has been placed in
the EDX register. In order to pass
parameters to the subroutine, you
need to manually push them onto
the stack first. There are a number
of steps to go through in order to
gain success rather than misery
from QT_Thunk. These will be fol-
lowed up by examples which will
attempt to clarify matters.

1. Reserve at least $3C (60) bytes
on the stack and ensure a stack
frame gets set up. This could con-
ceivably be done by declaring a
local variable at least $3C bytes in
size, although that is not sufficient
in Delphi 2. Because of the opti-
miser, this unused variable would
not be compiled into the program
and the required stack would not
be reserved. To remedy this we can
try and write a value into the vari-
able, but again this may not be
enough. Depending on the type of
the variable, the optimising com-
piler may notice that we have
written a value to a variable and not
read from it, and still optimise it
away. Declaring the variable as an
appropriately sized string and
writing to it does manage to fool
the optimiser and get the desired
effect.

2. Ensure an EBP stack frame gets
generated, ie ensure assembler is
generated in the routine’s prolog
code to set up the EBP base pointer
register. This is sometimes done
automatically, depending upon
what you do in the subroutine.
However, the optimiser is at liberty
to not bother if it sees fit. To force
a stack frame to be generated, use
the {$W+} or {$StackFrames On}
compiler directive before the sub-
routine. If an EBP stack frame is not
set up, your routine will cause an
Access Violation upon exit, as
QT_Thunk will have scribbled across
the calling routine’s stack frame.

3. Don’t declare any other stack
based variables in your subrou-
tine, since QT_Thunk has a tendency
to walk over them. The purpose of
the stack space reserved above is
to provide a scribbling pad just
below EBP for QT_Thunk to write
over. Other local variables may get
in the way of the EBP-relative area.

4. Don’t use additional stack
space in any other way for the

same reason as above. For exam-
ple, don’t use try..except..end
statements or try..finally..end
statements.

5. The DLL must be loaded not
with the usual LoadLibrary call, but
instead with the undocumented
LoadLibrary16. Since the DLL is
16-bit, LoadLibrary will fail to load
it. It must similarly be unloaded
with FreeLibrary16 rather than
FreeLibrary.

6. The function address must be
obtained not with GetProcAddress
but with the undocumented
GetProcAddress16. Normally when
using GetProcAddress, you assign
the result to a procedural variable
defined with a type that looks
much like the original function so
that you can easily call it from
Delphi code. When using QT_Thunk,
there is no reason to go to this
trouble, as the subroutine is called
indirectly by manually pushing
parameters onto the stack and
jumping to QT_Thunk. A normal
pointer will suffice, but defining a
procedural variable will make the
code more readable.

7. The parameters must be
pushed onto the stack using
assembler code, in the appropriate
order. For routines compiled with
Pascal calling conventions, this
means pushing them left to right,
and for C calling convention
routines push them from right to
left.

8. If you call a C calling conven-
tion routine, remember it is your
responsibility to tidy the stack up,
so increment the stack pointer, ESP,
by the number of bytes collectively
taken by all the routine parame-
ters. In other words, undo all the
parameter pushes you did at the
start by adding an appropriate
value to the stack pointer.

9. Look out for parameters of the
target subroutine that are point-
ers, or have constituent parts that
are pointers (this includes PChars).
You will need to substitute in an
address that means something to
16-bit code (see below). A 32-bit
pointer will be meaningless to your
16-bit DLL.

10. Avoid passing object refer-
ences and class references to 16-bit
routines. The layout of objects and

class information is rather differ-
ent between the two platforms.

11. If you want to pass string in-
formation, remember to translate
any Delphi 2 long strings into short
strings or PChars – Delphi 1 doesn’t
understand these new long strings.

12. The routine’s return value
will be in the 16-bit registers just as
it would in a 16-bit program. In
other words if the routine returns
a Longint, this return value will be
found in DX (high word) and AX (low
word). If it returns a byte, this will
be in AL.

13. If a pointer value is returned
from 16-bit then it will need to be
transformed into the equivalent
32-bit pointer.

14. Remember that the generic
types Integer and Cardinal are 16-
bit values in 16-bit but 32-bit values
in 32-bit. If an Integer or Cardinal
variable is declared in a 16-bit DLL,
use a Smallint or Word in the 32-bit
EXE, or redefine Integer and
Cardinal to be Smallint and Word.

15. It is wise to make a 16-bit test
program that calls the target rou-
tine in the DLL before embarking
on writing a 32-bit calling version.
This should be loaded into Turbo
Debugger for Windows and you
should inspect the subroutine call
in the CPU (assembler code) view.
This will clarify what parameter
values get pushed onto the stack
and in what order. This is particu-
larly important with non-atomic
data types where there may be spe-
cial values passed on the stack, eg
open arrays (where a number indi-
cating how many array elements
are present is passed in addition to
the array) and constant arrays.

Let’s now see how all this pans
out with some example code. You’ll
notice that all the code sections
that use QT_Thunk are button event
handlers. It is often desirable to
wrap up a 16-bit call via QT_Thunk in
a stand-alone routine. You can see
an example of such a thunk func-
tion, or thunktion, in the later sec-
tion Finding Free System Resources.

Note that Matt Pietrek advises
that QT_Thunk should be declared as
a cdecl routine. Since we call it di-
rectly from assembler, and it gets
declared as a procedure with no
parameters, it makes no difference

34 The Delphi Magazine Issue 12

what convention it is declared with
in Delphi.

Calling A Procedure
On the disk is a project called
DLL16BIT.DPR which makes a 16-
bit DLL. Most of its code (all of
which is in the project file) is
shown in Listing 1. You will need to
refer to this listing often as we go
through the following paragraphs,
as the various routines are covered
in the various sections. Amongst
several other exported routines
that we’ll get onto later this project
has a parameter-less procedure
called NoParameters.

The 32-bit Delphi 2 project
QTTEST.DPR manages to call this
using the code snippet in Listing 2.
The subroutine follows step 1 by
declaring a string of at least $3C
bytes and initialising it to a blank
string. Any variables required in
the subroutine are declared non-
local for step 2 and the stack frame
compiler directive covers step 3.
The 16-bit DLL is loaded with a call
to LoadLib16. Step 5 above advises
LoadLibrary16 and LoadLib16 is sim-
ply a small wrapper around this
call that includes some error
checking (see Listing 3 for the
code). The file QTTHUNKU.PAS de-
fines this utility routine amongst
others, more of which later. The
DLL does get unloaded with a call
to the advised FreeLibrary16.

Notice that this example code
uses a procedural variable to store
the 16-bit routine’s address. This is
normal practice when using explic-
itly loaded DLLs in Windows, but
when calling a 16-bit routine from
32-bit code there is no real need for
this. Since the call is being hand-
coded in assembler, the type infor-
mation in the procedural variable
is never used and so a pointer vari-
able would serve just as well. One
plus point for the way it is written
here is that the procedural variable
acts as a form of self documenta-
tion: the parameters and return
type are obvious by looking at the
subroutine type. However, for
brevity, simple pointers will be
used from here on. This means that
the above type declaration can be
removed and the address variable
can be re-declared and assigned as

procedure NoParameters; export;
begin
 ShowMessage(’Hello world from a 16-bit DLL’);
end;
procedure Proc2ParamsPascal(X, Y: Longint); export;
begin
 ShowMessage(Format(’%d + %d = %d’, [X, Y, X + Y]));
end;
procedure Proc2ParamsC(X, Y: Longint); cdecl; export;
begin
 Proc2ParamsPascal(X, Y);
end;
procedure ProcPointerParam(Msg: PChar); export;
begin
 ShowMessage(Format(’Msg received from 32-bit: %s’, [Msg]));
end;
procedure ProcVarConstParams(var Num: Smallint; const Str: String); export;
begin
 Inc(Num, 10);
 ShowMessage(Str);
end;
procedure ProcOpenArrayParam(const Numbers: array of Smallint); export;
var
 Loop: Integer;
 Sum: Longint;
begin
 Sum := 0;
 for Loop := Low(Numbers) to High(Numbers) do
 Inc(Sum, Numbers[Loop]);
 ShowMessage(Format(’Sum of passed values = %d’, [Sum]));
end;
function Func2ParamsPascal(X, Y: Longint): Longint; export;
begin
 ShowMessage(Format(’1st: %d 2nd: %d’, [X, Y]));
 Result := X + Y;
end;
function Func2ParamsC(X, Y: Longint): Longint; cdecl; export;
begin
 Result := Func2ParamsPascal(X, Y);
end;
const
 Buffer: PChar = ’Hello world, returned from 16-bit’;
function FuncPointerParam(Msg: PChar): PChar; export;
begin
 ShowMessage(Format(’Msg received from 32-bit: %s’, [Msg]));
 Result := Buffer;
end;

➤ Listing 1: Some code from the 16-bit DLL16BIT.DPR project

type
 TDelphi1Proc = procedure; pascal;
var
 ProcAddress: TDelphi1Proc;
{$StackFrames On}
procedure TForm1.BtnProcNoParamsClick(Sender: TObject);
var
 EatStackSpace: String[$3C];
begin
 // Ensure buffer isn’t optimised away
 EatStackSpace := ’’;
 // Try and load 16-bit DLL
 DLLHandle := LoadLib16(’DLL16Bit.DLL’);
 @ProcAddress := GetProcAddress16(DLLHandle, ’NoParameters’);
 if Assigned(ProcAddress) then
 asm
 //Load routine address into EDX
 mov edx, ProcAddress
 //Call routine
 call QT_Thunk
 end;
 //Now release 16-bit DLL
 FreeLibrary16(DLLHandle);
end;

➤ Listing 2: Calling a procedure with no parameters

function LoadLibrary16(LibFileName: PAnsiChar): THandle; stdcall;
 external kernel32 index 35;
function LoadLib16(LibFileName: String): THandle;
begin
 Result := LoadLibrary16(PChar(LibFileName));
 if Result < HInstance_Error then
 raise EFOpenError.Create(’LoadLibrary16 failed!’);
end;

➤ Listing 3: Loading a 16-bit DLL from Delphi 2

August 1996 The Delphi Magazine 35

follows:

var ProcAddress: Pointer;
...
ProcAddress :=
 GetProcAddress16(DLLHandle,
 ’NoParameters’);

Note that there are no parameters
or return values with the NoParame-
ters routine, so the remaining
steps don’t apply.

Passing Parameters
The DLL also has a procedure
Proc2ParamsPascal (see Listing 1
again) that takes a couple of long
integer parameters. In order to
pass parameters to the subroutine
via QT_Thunk, you need to push
them onto the stack. Since this is a
procedure that has been declared
in Delphi 1 with no calling conven-
tion modifier, it will have been com-
piled using the Pascal calling
convention. This means that the
parameters are expected to be
pushed in a left to right order, ie we
need to push X and then push Y.
Listing 4 shows how to achieve
this.

Cdecl Routines
If the procedure is declared using
the C calling convention (with
cdecl), the parameters must be
pushed in reverse order, right to
left. In addition, the C calling con-
vention requires that the function
caller tidy up the stack, rather than
the called function as is the case
with the Pascal convention. This
requirement means we need to
increment the stack pointer by the
number of bytes originally pushed
onto the stack. The DLL project
implements a procedure
Proc2ParamsC which is just the same
as Proc2ParamsPascal, but declared
to be cdecl. The code in Listing 5
shows that a C declared routine is
called practically the same as a
Pascal declared one (Listing 4), but
for the reversed parameter pushes
and the stack increment at the end.

Passing Pointers
Here’s where things start getting a
bit sticky. When dealing with any
pointer, you need to pass a value to
the DLL that means something to it.

Your 32-bit pointers are incompat-
ible with selector/offset combina-
tions that are used in 16-bit, so a
translation process must take
place. However, an additional
problem is that not all memory that
is addressable in a 32-bit process
will be addressable from 16-bit: the
potential address ranges differ.

The ramification of this is that you
must allocate a block of memory in
a way that ensures the memory will
be accessible from 16-bit DLLs.
Data can then be copied into the
buffer and a 16-bit version of its
address can be passed to the rou-
tine. When QT_Thunk finishes, you
need to de-allocate the memory.

var Param1, Param2: Longint;
...
ProcAddress := GetAddress16(DLLHandle, ’Proc2ParamsPascal’);
if Assigned(ProcAddress) then begin
 Param1 := 5;
 Param2 := 20;
 asm
 push Param1
 push Param2
 mov edx, ProcAddress
 call QT_Thunk
 end;
end;

➤ Listing 4: Passing parameters to a subroutine using Pascal calling
conventions

var Param1, Param2: Longint;
...
push Param2 //Note second parameter is pushed first
push Param1
mov edx, ProcAddress
call QT_Thunk
//Increment the stack ptr by size of the 2 Longint parameters
add esp, 4 * 2
...

➤ Listing 5: Passing parameters to a subroutine using C calling

type THandle16 = Word;
...
function GlobalAlloc16(Flags: Integer; Bytes: Longint): THandle16; stdcall;
function GlobalFree16(Mem: THandle16): THandle16; stdcall;
function GlobalLock16(Mem: THandle16): Pointer; stdcall;
function GlobalUnLock16(Mem: THandle16): WordBool; stdcall;

➤ Listing 6: Undocumented 16-bit Windows 95 memory

GlobalAlloc16 Allocates 16-bit accessible memory with the specified
flags and returns a 16-bit selector to represent it

GlobalFree16 Takes a 16-bit selector and frees the memory block it
represents and presumably also frees the selector

GlobalLock16 Takes a 16-bit selector, locks it and returns a 32-bit
pointer that can access the memory

GlobalUnlock16 Takes a 16-bit selector and unlocks the memory block it
refers to

➤ Table 2: Descriptions of Listing 6’s routines

function GlobalAllocPtr16(Flags: Word; Bytes: Longint): Pointer;
begin
 Result := nil; //Ensure memory is fixed, meaning there is no need to lock it
 Flags := Flags or gmem_Fixed;
 LongRec(Result).Hi := GlobalAlloc16(Flags, Bytes);
end;
function GlobalFreePtr16(P: Pointer): THandle16;
begin
 Result := GlobalFree16(LongRec(P).Hi);
end;

➤ Listing 7: Wrapper routines to simplify 16-bit memory

36 The Delphi Magazine Issue 12

16-bit accessible memory can be
managed using some undocu-
mented Windows 95 routines.
These are declared in Listing 6 and
described individually in Table 2.

When attempting to use these
undocumented calls from a 32-bit
capable C/C++ compiler, you are
forced to use specially hand-
crafted .DEF files, as these routines
are exported from Windows 95’s
Kernel32 with no names. This poses
no problem for Delphi, which can
link happily to the number alone.
One up for Delphi developers I’m
sure you’ll agree.

To simplify the use of these calls,
you can use some wrapper func-
tions from QTTHUNKU.PAS to allo-
cate and de-allocate 16-bit
memory, which return and take a
16-bit pointer respectively. These
are shown in Listing 7.

The allocation routine fixes the
memory, meaning there is no need
to lock it. Locking the memory and
unlocking it in GlobalFreePtr16 is
no problem, but there is a good
reason for actually fixing the
memory. When code is later used
to translate the returned 16-bit
selector/offset pointer into a 32-bit
linear offset, problems are avoided
by ensuring the memory is fixed. If,
during the time that the 32-bit
offset is being used, the Windows
95 garbage compactor kicks in, it is
feasible that the 16-bit accessible
memory will be moved in physical
memory. This would invalidate
the 32-bit pointer. Fixing the mem-
ory stops Windows physically
shuffling it around.

In addition QTTHUNKU.PAS has
another routine that can take a
16-bit pointer and return a 32-bit
pointer to the same memory.
Notice that GlobalLock16 can do
this, but that routine imposes a re-
quirement to unlock the memory
afterwards using GlobalUnlock16.
The Ptr16To32 routine in Listing 8
doesn’t. It avoids the problem by
using WOWGetVDMPointer (Windows-
on-Windows Get Virtual DOS
Machine Pointer).

WOWGetVDMPointer is a routine
implemented in WOW32.DLL in
Windows 95 and Windows NT. It
can translate a 16-bit real mode or
protected mode pointer into a flat

32-bit offset. Though documented,
Borland have not provided import
declarations for it or any other WOW
routines. Ptr16To32 could just as
well have been implemented using
the GetThreadSelectorEntry, for
which a declaration is present, as
shown in Listing 9.

So, to pass a pointer to your 16-
bit DLL, you need to allocate a new
block of memory of an appropriate
size, yielding a 16-bit pointer. Then
you need to copy the relevant data
into the buffer using a 32-bit repre-
sentation of the pointer. After us-
ing the pointer you need to free it.
Since allocating a 16-bit buffer and
populating it are common require-
ments when passing pointer-based
data down to 16-bit, there is an-
other wrapper routine to do it (List-
ing 10). It takes a byte count and
some flags, as per GlobalAlloc16,
but also three more parameters. A
32-bit pointer is taken as a var
parameter, which gets set to a 32-
bit version of the 16-bit buffer
pointer. Another var parameter,
this time typeless, is used to repre-
sent the data to be copied and the
last parameter dictates how many
bytes will be copied.

It is safe to use Ptr16To32 on data
allocated by GlobalAllocPointer16
or GlobalAllocPtr16 since they
explicitly fix the allocated buffer. If
you allocate memory using
GlobalAlloc16 it is your responsi-
bility to ensure the memory is fixed
by using GlobalFix and GlobalUnfix
on the 32-bit version of the ad-
dress. The ProcPointerParam proce-
dure from the DLL (See Listing 1)
takes a pointer parameter. The
pointer is a PChar and can be called
using the techniques shown in
Listing 11.

You’ll perhaps notice that de-
spite the flat pointer being set up,
it is not being used here. However,
it may need to be used after the
routine has been called to get ac-
cess to data that may have been
modified. Later examples do this.

Const And Var Parameters
When you declare a var parameter,
you are passing by reference as
opposed to the default passing by
value scheme. The effect is that
you pass the address of the vari-
able that was passed as the
parameter, rather than a copy of its
value. The same applies with

//Turn 16-bit pointer (selector and offset) into 32-bit pointer (offset)
function Ptr16To32(P: Pointer): Pointer;
begin
 Result := WOWGetVDMPointer(DWord(P), 0, True);
end;

➤ Listing 8: How to turn a 16-bit pointer into a 32-bit pointer

function Ptr16To32(P: Pointer): Pointer;
var LDTEntry: TLDTEntry;
begin
 if not GetThreadSelectorEntry(GetCurrentThread, LongRec(P).Hi, LDTEntry) then
 Result := nil
 else
 with LDTEntry do
 Result :=
 Pointer((BaseHi shl 8 + BaseMid) shl 16 + BaseLow + LongRec(P).Lo);
end;

➤ Listing 9: A possible replacement for Listing 8

//16-bit pointer returned. FlatPointer is 32-bit pointer
//Buffer is allocated and then DataSize bytes from Source are copied in
function GlobalAllocPointer16(Flags: Word; Bytes: Longint;
 var FlatPointer: Pointer; var Source; DataSize: Longint): Pointer;
begin
 //Allocate memory in an address range
 //that _can_ be accessed by 16-bit apps
 Result := GlobalAllocPtr16(Flags, Bytes);
 //Get 32-bit pointer to this memory
 FlatPointer := Ptr16To32(Result);
 //Copy source data into the new bimodal buffer
 Move(Source, FlatPointer^, DataSize);
end;

➤ Listing 10: 16-bit memory management super wrapper routine

August 1996 The Delphi Magazine 37

structured and short string
parameters passed as const pa-
rameters, with the difference that
you are unable to write to a const
parameter. Other const parame-
ters are passed by value.
ProcVarConstParams is a 16-bit pro-
cedure (see Listing 1) that gets
called from 32-bit in Listing 12.
Notice that the var and const pa-
rameters need to be placed in
16-bit accessible memory before
passing the address along.

Open Array Parameters
When you pass a value to a routine
declared to take an open array, ie
an array argument with no speci-
fied index bounds, two values are
passed. The array is passed first (if
this is a var or const parameter, the
address of the array is passed), and
then a value indicating how many
values make up the array. This
value is one less than the number
of array elements and is passed to
16-bit routines as a 16-bit number.

The idea is that the called rou-
tine can access the array as if its
elements were numbered from
zero, which would make the last
index one less than the total num-
ber of elements. The functions Low
and High, when applied to the array
parameter in the routine’s imple-
mentation, return 0 and the high
index number respectively. The
extra, normally hidden, parameter
identifies the last array index
number.

DLL16BIT.DPR has a procedure
ProcOpenArrayParam that takes a
const open array of Smallints (see
Listing 1). Listing 13 shows the
const array parameter being
passed by reference, via some
allocated 16-bit memory.

Function Return Values
When 16-bit functions return val-
ues, they are typically returned in
various register combinations.
8-bit values are returned in AL and
16-bit values are returned in AX.
Values up to 32-bit (including
pointers) are returned with the low
word in AX and the high word in DX.
An assembler manual should
describe other values such as float-
ing point values. When a 16-bit
function is called from 32-bit, the

values are returned in the same
register combinations.

Listing 1 shows that Proc2Params-
Pascal and Proc2ParamsC (as
covered earlier) have alternative
definitions as functions in the DLL
project: Func2ParamsPascal and
Func2ParamsC. These return a calcu-
lated sum value rather than just
displaying it. In Listing 14 there are
two button OnClick handlers from
QTTEST.DPR that call these rou-
tines and display the results ob-
tained from the DX:AX register pair.

Pointer Return Values
If a pointer value is returned from
a function, you need to turn what

will be a 16-bit address into a 32-bit
address. The previously described
Ptr16To32 function can do this, but
there is a potential pitfall.

If the 16-bit pointer refers to
memory allocated by the 16-bit
process, you should take an extra
safety step. If the pointer refers to
a buffer allocated by Global-
AllocPtr16 in your 32-bit program,
the step can be avoided. The
danger issue was outlined earlier:
if you translate an arbitrary 16-bit
address into a 32-bit linear
address, the Windows system gar-
bage collection thread can invali-
date the address if the memory is
not fixed. The GlobalAllocPtr16

var MsgBuffer, MsgBuffer16: PChar;
 Msg: PChar = ’32-bit call’;
...
//Get and fill 16-bit memory with source string
MsgBuffer16 := GlobalAllocPointer16(GPTR, 255, Pointer(MsgBuffer),
 (Msg^, StrLen(Msg));
asm
 push MsgBuffer16
 mov edx, ProcAddress
 call QT_Thunk
end;
GlobalFreePtr16(MsgBuffer16);

➤ Listing 11: Passsing a pointer from 32-bit to 16-bit

var
 OldNum: Smallint;
 NumPtr, NumPtr16: ^Smallint;
 StrPtr, StrPtr16: PShortString;
 Str: ShortString = ’Hello from 32-bit’;
...
OldNum := 0;
//Get and fill 16-bit buffers with source data
NumPtr16 := GlobalAllocPointer16(GPTR, SizeOf(Smallint),
 Pointer(NumPtr), OldNum, SizeOf(Smallint));
StrPtr16 := GlobalAllocPointer16(GPTR, SizeOf(ShortString),
 Pointer(StrPtr), Str, Succ(Length(Str)));
asm
 push NumPtr16
 push StrPtr16
 mov edx, ProcAddress
 call QT_Thunk
end;
ShowMessage(Format(’Original var param = %d, new var param = %d’,
 ([OldNum, NumPtr^]));
GlobalFreePtr16(NumPtr16);
GlobalFreePtr16(StrPtr16);

➤ Listing 12: Passing const and var parameters to 16-bit

type
 TNumbers = array[11..15] of Smallint;
var
 Numbers: TNumbers = (1, 2, 3, 4, 5);
 NumOfNumbers: Word;
 NumbersPtr, NumbersPtr16: ^TNumbers;
...
//Get and fill 16-bit buffer with source data
NumbersPtr16 := GlobalAllocPointer16(GPTR, SizeOf(TNumbers),
 Pointer(NumbersPtr), Numbers, SizeOf(TNumbers));
NumOfNumbers := High(TNumbers) - Low(TNumbers);
asm
 push NumbersPtr16
 push NumOfNumbers
 mov edx, ProcAddress
 call QT_Thunk
end;
GlobalFreePtr16(NumbersPtr16);

➤ Listing 13: Passing an open array parameter from 32-bit

38 The Delphi Magazine Issue 12

var Param1, Param2, ReturnValue: Longint;
...
ProcAddress := GetAddress16(DLLHandle, ’Func2ParamsPascal’);
if Assigned(ProcAddress) then begin
 Param1 := 5;
 Param2 := 20;
 asm
 push Param1
 push Param2
 mov edx, ProcAddress
 call QT_Thunk
 mov ReturnValue.Word.2, dx
 mov ReturnValue.Word.0, ax
 end;
 ShowMessage(Format(’Sum of parameters = %d’, [ReturnValue]));
end;
...
ProcAddress := GetAddress16(DLLHandle, ’Func2ParamsC’);
if Assigned(ProcAddress) then begin
 Param1 := 5;
 Param2 := 20;
 asm
 push Param2
 push Param1
 mov edx, ProcAddress
 call QT_Thunk
 //Increment the stack ptr by size of the 2 Longint parameters
 add esp, 4 * 2
 mov ReturnValue.Word.2, dx
 mov ReturnValue.Word.0, ax
 end;
 ShowMessage(Format(’Sum of parameters = %d’, [ReturnValue]));
end;

➤ Listing 14: Function return values

routine ensures memory is fixed.
When converting 16-bit pointers to
32-bit, where the pointer comes
from the 16-bit process, use two
special routines to do the job as
declared in Listing 15.

These two act as replacements
for the previously described
WOWGetVDMPointer. The routine
WOWGetVDMPointerFix does exactly
the same, but also calls GlobalFix

function WOWGetVDMPointerFix(vp, dwBytes: DWord; fProtectedMode: Bool):
 Pointer; stdcall;
procedure WOWGetVDMPointerUnfix(vp: DWord); stdcall;

➤ Listing 15: Extra safety in translating 16-bit pointers to 32-bit

var ReturnedMsg: PChar;
...
MsgBuffer16 :=
 GlobalAllocPointer16(GPTR, 255, Pointer(MsgBuffer), Msg^, StrLen(Msg));
asm
 push MsgBuffer16
 mov edx, ProcAddress
 call QT_Thunk
 mov ReturnedMsg.Word.0, ax
 mov ReturnedMsg.Word.2, dx
end;
ShowMessage(Format(’Msg received from 16-bit: %s’,
 [PChar(Ptr16To32Fix(ReturnedMsg))]));
Ptr16To32Unfix(ReturnedMsg);
GlobalFreePtr16(MsgBuffer16);

➤ Listing 16: Dealing with pointer return values

on the 32-bit pointer, and
WOWGetVDMPointerUnfix calls
GlobalUnfix to tidy up.

The routine FuncPointerParam
from the 16-bit DLL (See Listing 1)
returns a PChar. The 32-bit program
passes in a PChar, translated to 16-
bit, and displays the returned
string using this code. Since the
returned string is created in the
DLL, it is only reliably usable after

using the two previously described
calls which have been packaged
into the shorter-named
Ptr16To32Fix and Ptr16To32Unfix.
Listing 16 contains the code.

C++ DLL Routines
And Linking By Number
When your 16-bit application uses
DLLs written in C++, it may well
avoid the issues of name mangling,
or decorated C++ function names,
by linking by number instead of by
name. When writing a thunktion
wrapper for such a routine, it may
seem a little excessive to have to
resort to finding the name of the
routine. To avoid the problem you
can take advantage of a “feature” of
GetProcAddress16. You can get it to
find the address of a function by
specifying an ordinal number in a
string format. To find the address
of a routine exported with the
number 45, it is fine to use:

ProcAddress := GetProcAddress(
 Handle, ’#45’);

Finding
Free System Resources
In Windows 3.x you could find
available free system resources
with the GetFreeSystemResources
API. For some reason, this has been
removed from the Win32 API.
However we can still call the 16-bit
version using QT_Thunk as outlined
in the previous section, and this
approach is used by Matt Pietrek in
his published work. GetFreeSystem-
Resources is declared in Delphi 1’s
WinProcs unit and in the
QTFUNCSU.PAS file on this
month’s disk as follows:

function GetFreeSystemResources(

 SysResource: Word): Word;

The function is implemented via a
call to QT_Thunk in much the same
way as shown above, but it does
use another utility routine from
QTTHUNKU.PAS. Since GetFree-
SystemResources comes from the 16-
bit Windows module USER.EXE, we
can use User16Handle (see Listing
17). This, like GDI16Handle and
Kernel16Handle, is a simple function
that obtains the handle of a 16-bit
system DLL in Windows 95.

function User16Handle: THandle;
begin
 //Get User handle by loading it.
 Result := LoadLib16(’USER.EXE’);
 //Free this particular load - User will stay in memory
 FreeLibrary16(Result);
end;

➤ Listing 17: Obtaining a 16-bit core system DLL module handle

August 1996 The Delphi Magazine 39

Normally, when using a custom
DLL, you load it, then get the ad-
dress of a routine, call the routine,
then unload the library: the loading
and unloading must be discontigu-
ous operations to ensure the DLL is
present when you make the call.
Since the 16-bit system DLLs are
always in memory anyway, we can
get one of their handles by loading
the library in the usual fashion, but
we can “unload” it straight away,
which effectively decrements the
usage counter, but leaves it in
memory. This simplifies the calling
code, the remains of which are in
Listing 18.

This surrogate 32-bit routine,
which has an identical interface to
the 16-bit function it provides a
wrapper for, is called a thunktion,
a function implemented by a short-
cut flat thunk. Having written the
thunktion (in QTFUNCSU.PAS), it
can be used just like it could under
Windows 3.1 (it didn’t exist in
Windows 3.0). The project FSR.DPR
has a timer on it which periodically
calls GetFreeSystemResources and
updates three progress bars with
the free GDI resources, User
resources and System resources.
The project ends up looking some-
what like the Windows 95 resource
meter application (see Figure 1).

There are a few points made in
Chapter 4 of Windows 95 System
Programming Secrets worth repeat-
ing about GetFreeSystemResources.
Firstly, the system resource value
is simply the lower of the User and
GDI resource values. This point
was reasonably well understood
by 16-bit Windows programmers.

The second point is that in
Windows 3.1, the free GDI resource
value indicated the percentage of
free space in the (16-bit) GDI local
heap. In Windows 95, it represents
the lower value of the percentage
of free space in the 16-bit GDI heap
and that free in the 32-bit GDI heap.
It doesn’t take too much guessing
which one will be lower. For the
User resource value, Windows 3.1
returned the lowest percentage
free space in User’s local heap,
menu heap and string heap. In Win-
dows 95, the heaps used are the
16-bit local heap, 32-bit window
heap and 32-bit menu heap. Again,

function GetFreeSystemResources(SysResource: Word): Word;
var EatStackSpace: array[0..$3C] of Char;
begin
 // Make sure to use the local variable so it’s not optimised away
 EatStackSpace := ’’;
 GetFreeSystemRes := GetProcAddress16(User16Handle,(
 ’GetFreeSystemResources’);
 if Assigned(GetFreeSystemRes) then
 asm
 push SysResource
 mov edx, [GetFreeSystemRes]
 call QT_Thunk
 mov [Result], ax
 end;
end;

➤ Listing 18: Finding free system resources with a thunktion

➤ Figure 1

the 16-bit value will come through,
but it checks nevertheless.

The last point is a bit of a conten-
tious issue. The values returned by
GetFreeSystemResources are not ab-
solute values, as given in Windows
3.1. Instead they are relative
values. When Windows 95 is
launched, typically Windows
Explorer is also launched as the
system shell – the thing that

implements the system tray and
the icons on the desktop. Of course
you often re-launch Explorer to act
as a File Manager like application
during a Windows session: it is an
application with several purposes.

When Explorer has settled down,
the system resources are calcu-
lated and stored away. These are
used as a benchmark to compare
subsequent resource values

uses QTThunkU;
{$Align Off}
{$StackFrames On}
{ Generic stuff for 16-bit }
type
 THandle = THandle16;
 Bool = WordBool;
var
 ToolHelp16Handle: Windows.THandle;
 MEPtr32Bit, MEPtr16Bit: PModuleEntry;
 TEPtr32Bit, TEPtr16Bit: PTaskEntry;
 LEPtr32Bit, LEPtr16Bit: PLocalEntry;
 SHIPtr32Bit, SHIPtr16Bit: PSysHeapInfo;
...
initialization
 MEPtr16Bit := GlobalAllocPtr16(GPTR, SizeOf(TModuleEntry));
 MEPtr32Bit := Ptr16To32(MEPtr16Bit);
 TEPtr16Bit := GlobalAllocPtr16(GPTR, SizeOf(TTaskEntry));
 TEPtr32Bit := Ptr16To32(TEPtr16Bit);
 LEPtr16Bit := GlobalAllocPtr16(GPTR, SizeOf(TLocalEntry));
 LEPtr32Bit := Ptr16To32(LEPtr16Bit);
 SHIPtr16Bit := GlobalAllocPtr16(GPTR, SizeOf(TSysHeapInfo));
 SHIPtr32Bit := Ptr16To32(SHIPtr16Bit);
 ToolHelp16Handle := LoadLibrary16(’TOOLHELP.DLL’);
finalization
 GlobalFreePtr16(MEPtr16Bit);
 GlobalFreePtr16(TEPtr16Bit);
 GlobalFreePtr16(LEPtr16Bit);
 GlobalFreePtr16(SHIPtr16Bit);
 FreeLibrary16(ToolHelp16Handle);
end.

➤ Listing 19: Housekeeping sections of a ToolHelp thunktion unit

40 The Delphi Magazine Issue 12

against. This means that a value of
80% GDI resources free (as in the
figure above) actually means the
amount of GDI resources free are
80% of the value that were free after
Explorer loaded. This can be taken
to be making the figure look rather
favourable, and usually rather
better that we were used to in
Windows 3.1, cooking the books as
it were. It can also be interpreted
as taking account of resources
taken by Explorer that could never
be recovered by the user, and
which therefore have no real
relevance in appearing in reported
statistics.

Missing
ToolHelp Functionality
The above examples were mainly
for demonstration and didn’t really
give a good impression of how
things work with real 16-bit DLLs in
real applications. In this section
we’ll check out some of the
ToolHelp functionality that has

var ProcAddress: Pointer;
...
function ModuleFindHandle(lpModule: PModuleEntry; hModule: THandle): THandle;
var EatStackSpace: String[$3C];
begin
 // Ensure buffer isn’t optimised away
 EatStackSpace := ’’;
 ProcAddress := GetProcAddress16(ToolHelp16Handle, ’ModuleFindHandle’);
 if Assigned(ProcAddress) then begin
 MEPtr32Bit^ := lpModule^;
 asm
 push MEPtr16Bit
 push hModule
 mov edx, ProcAddress
 call QT_Thunk
 mov Result, ax
 end;
 lpModule^ := MEPtr32Bit^;
 end;
end;

➤ Listing 20: A ToolHelp thunktion

disappeared in the 32-bit version
and see how easily we can get it
back. To do this, the desirable
missing 16-bit import declarations,
along with their supporting types,
have been copied from the original
16-bit import unit to a 32-bit thunk-
tion unit called TLHELP16.PAS, to
distinguish it from the original file
TOOLHELP.PAS.

In order to get the data types
used compiling down to the same
memory layout in the two plat-
forms, several steps are required.

1. The THandle type (which is 32-
bit in Delphi 2 and 16-bit in Delphi
1) is redefined to be the same as a
THandle16 (as defined in the
QTTHUNKU.PAS unit).

2. The type Bool used in many
Windows import declarations,
which is a synonym for LongBool in
Delphi 2, but WordBool in Delphi 1,
is redefined to be a WordBool.

3. Optimal 32-bit record align-
ment is turned off, not with the
packed record modifier, as is

common in Delphi 2, but with a
compiler directive.

Additionally, EBP stack frames
are ensured for the thunktions that
are defined in the unit by using a
compiler directive as discussed
before.

Because a lot of the often called
ToolHelp routines take pointer pa-
rameters, which are record ad-
dresses, the initialisation section
of the unit allocates 16-bit accessi-
ble buffers for the various records
and 32-bit equivalent pointers are
also set up. Additionally, it loads
up the 16-bit TOOLHELP.DLL mod-
ule (which isn’t present all the
time, unlike the core 16-bit system
DLLs User, GDI and Kernel). The
finalisation section tidies all this
up. Listing 19 shows what’s been
discussed so far.

The rest of the unit implements
the thunktion wrappers. One of
them is shown in Listing 20 as a
demonstration of what they all look
roughly like.

An example project, LISTER.DPR
is written for Delphi 1 where it uses
the ToolHelp import unit. This
program lists all 16-bit modules
(using ModuleFirst and ModuleNext)
and all 16-bit and 32-bit tasks (using
TaskFirst and TaskNext) as dictated
by a couple of buttons on the form.
The code that does the mod-
ule/task listing is executed via a
timer: as programs are loaded and
unloaded the list updates itself.
This ability to see 16-bit modules is
not normally available to 32-bit ap-
plications. However, with a minor
piece of conditional compilation, it
is ready for Delphi 2 by using the
TlHelp16 thunktion unit instead
(see Figure 2).

For comparison purposes, two
additional projects are also sup-
plied which use the 32-bit ToolHelp
functionality available in Windows
95 to list 32-bit modules (using
CreateToolhelp32Snapshot, Module-
32First and Module32Next) and all
16-bit and 32-bit tasks, or proc-
esses (using CreateToolhelp32Snap-
shot, Process32First and
Process32Next). LISTER2.DPR is
written in a similar way to
LISTER.DPR, in that the relevant in-
formation is written directly into
the listbox. LISTER2B.DPR takes a

➤ Figure 2

August 1996 The Delphi Magazine 41

slightly different approach. To get
a slight efficiency gain, it writes the
information into a TStringList
object, which is then copied into
the listbox.

The efficiency gain arises
because the Windows 95 listbox is
implemented in the 16-bit Windows
system files. Every 32-bit listbox
operation is itself thunked down to
16-bit by Windows. Doing this
many times in succession can get
rather slow. Doing it all in one hit

with a TStringList can speed
things up.

Final Note
This new ToolHelp thunktion unit
gives us another possible imple-
mentation of GetFreeSystemResour-
ces, given that the real Win16 one
is implemented as a wrapper
around SystemHeapInfo, which is
catered for in TlHelp16. Listing 21 is
an alternative definition for it,
which also appears in the

//Alternative wrapper routine for GetFreeSystemResources
//based on how the real one works
function GetFreeSystemResources(SysResource: Word): Word;
var SHI: TSysHeapInfo;
begin
 SHI.dwSize := SizeOf(SHI);
 SystemHeapInfo(@SHI);
 //Set up a possible return value
 Result := SHI.wGDIFreePercent;
 case SysResource of
 gfsr_GDIResources: { GDI value already set up };
 gfsr_UserResources: Result := SHI.wUserFreePercent;
 else
 //If neither GDI nor User value requested
 //return the lower of the two
 if Result > SHI.wUserFreePercent then
 Result := SHI.wUserFreePercent;
 end;
end;

➤ Listing 21: A possible replacement for Listing 18

QTFUNCSU.PAS unit file, used by
the FSR.DPR project described in a
previous section (it is wrapped up
in a conditional compilation sec-
tion to ensure only one of the two
versions is used).

References
➣ Matt Pietrek, Windows 95 Sys-

tem Programming Secrets, IDG
Books, 1995. ISBN 1-56884-318-6.

➣ Matt Pietrek. Direct Thunking in
Windows 95, Dr Dobbs Source-
book, Volume 21, Issue 14, Num-
ber 256, March/April 1996.

➣ Andrew Schulman. Unauthor-
ized Windows 95, IDG Books,
1994. ISBN 1-56884-169-8.

Brian Long is a freelance Delphi
consultant and trainer based in
the UK. He is available for book-
ings and can be contacted by email
on 76004.3437@compuserve.com

Copyright ©1996 Brian Long
All rights reserved.

42 The Delphi Magazine Issue 12

	Flat Thunks With The Thunk Compiler
	Cutie Flat Thunks With QT_Thunk
	Calling A Procedure
	Passing Parameters
	CdecI Routines
	Passing Pointers
	Const And Var Parameters
	Open Array Parameters
	Function Return Values
	Pointer Return Values
	C++ DLL Routines And Linking By Number
	Finding Free System Resources
	Missing ToolHelp Functionality
	Final Note
	References

